Relational envelope-based planning
نویسنده
چکیده
This thesis proposes a synthesis of logic and probability for solving stochastic sequential decision-making problems. We address two main questions: How can we take advantage of logical structure to speed up planning in a principled way? And, how can probability inform the production of a more robust, yet still compact, policy? We can take as inspiration a mobile robot acting in the world: it is faced with a varied amount of sensory data and uncertainty in its action outcomes. Or, consider a logistics planning system: it must deliver a large number of objects to the right place at the right time. Many interesting sequential decision-making domains involve large state spaces, large stochastic action sets, and time pressure to act. In this work, we show how structured representations of the environment’s dynamics can constrain and speed up the planning process. We start with a problem domain described in a probabilistic logical description language. Our technique is based on, first, identifying the most parsimonious representation that permits solution of the described problem. Next, we take advantage of the structured problem description to dynamically partition the action space into a set of equivalence classes with respect to this minimal representation. The partitioned action space results in fewer distinct actions. This technique can yield significant gains in planning efficiency. Next, we develop an anytime technique to elaborate on this initial plan. Our approach uses the envelope mdp framework, which creates a Markov decision process out of a subset of the possible state space. This strategy lets an agent begin acting quickly within a restricted part of the full state space, as informed by the original plan, and to judiciously expand its envelope as resources permit. Finally, we show how the representation space itself can be elaborated within the anytime framework. This approach balances the need to respond to time-pressure and to produce the most robust policies possible. We present experimental results in some synthetic planning domains and in a simulated military logistics domain. Thesis Supervisor: Leslie Pack Kaelbling Title: Professor
منابع مشابه
Envelope-based Planning in Relational MDPs
Introduction: A mobile robot acting in the world is faced with a large amount of sensory data and uncertainty in its action outcomes. Indeed, almost all interesting sequential decision-making domains involve large state spaces and large, stochastic action sets. We investigate a way to act intelligently as quickly as possible in domains where finding a complete policy would take a hopelessly lon...
متن کاملA Relational Framework to Explain the Town’s Local Actors Decision-Making Mechanism
The life of Towns has become more important and greatly emphasized in recent years and this heralds the arrival of a new era when this type of settlements is introduced as major living and investment capacities. Therefore, it is necessary to study the different aspects of towns in order to plan and manage their development and answer the question about different decision-making mechanism in the...
متن کاملA relational database approach to a linear programming-based decision support system for production planning in secondary wood product manufacturing
Secondary manufacturers in the forest products industry face a complex production planning process. Linear programming (LP)-based applications have addressed this production planning issue. However, most models have been developed for a specific plant configuration and cannot readily be applied to others. A relational database approach was used to create an integrated linear programming-based d...
متن کاملFuzzy Relational Matrix-Based Stability Analysis for First-Order Fuzzy Relational Dynamic Systems
In this paper, two sets of sufficient conditions are obtained to ensure the existence and stability of a unique equilibrium point of unforced first-order fuzzy relational dynamical systems by using two different approaches which are both based on the fuzzy relational matrix of the model.In the first approach, the equilibrium point of the system is one of the centers of the related membership fu...
متن کاملScaling up Heuristic Planning with Relational Decision Trees
Current evaluation functions for heuristic planning are expensive to compute. In numerous planning problems these functions provide good guidance to the solution, so they are worth the expense. However, when evaluation functions are misguiding or when planning problems are large enough, lots of node evaluations must be computed, which severely limits the scalability of heuristic planners. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008